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1 Introduction

Since its development in the early 1900’s, seis-
mology has been an effective tool to determine
the internal structure of the earth. For exam-
ple, in 1906, Richard Oldham managed to de-
tect the presence of the earth’s liquid outer co-
re using seismological data by observing the so-
called seismic shadow zone at source-receiver an-
gular distances of about 104° to 140° in which
no seismic waves can be detected after an ear-
thquake. This is because seismic shear waves (or
secondary waves) cannot penetrate the liquid ou-
ter core while compressional waves (or primary
waves) are refracted [1]. Later, in 1909, with mo-
re seismological data at hand, Andrija Mohoro-
vičić was able to observe the Mohorovičić dis-
continuity (or M-discontinuity or MOHO) which
is a rapid wave velocity transition at an average
depth of less than 54 km and marks the border-
line between the earth’s crust and mantle [2].
In the following decades, the increasing num-

ber of seismological observations and records fi-
nally lead to Adam M. Dziewonski’s and Don
L. Anderson’s Preliminary Reference Earth Mo-
del (PREM) from 1981 which describes how
the earth’s velocity and density structure de-
pends on depth [3]. Figure 1 shows a plot of
the PREM data. Besides travel times of obser-
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FIG. 1: Plotted version of PREM (1981). Even
recent models are in very good accor-
dance with PREM, except for small dis-
crepancies in the upper mantle region.
Data from [3], taken from [4]

ved seismic waves, the model also fits a variety of
different boundary conditions like, for example,
the earth’s total mass and its moment of iner-
tia which can be obtained through astronomical
observations, making this model even more rele-
vant.
Beginning in 1969 with the first manned lan-

ding on the moon during the Apollo 11 missi-
on, NASA started to deploy seismometers on
the moon’s surface allowing the same measure-
ments that have been conducted on earth before.
During the following missions of Apollo 12, 14,
15 and 16, NASA built up a seismic network of
four stations that returned seismic data on ap-
proximately 10,000 deep moonquakes, 28 shal-
low moonquakes, 1,800 meteoroid impacts and
9 artificial impacts over the nearly eight years
of operation and is known as the Apollo Seismic
Passive Experiment (PSE) [5, 6].
This text shall deliver a short but keen insight

into the scientific methods of modern seismology.
Thereto, chapter 2 will give an overview of the

physics and mathematics involved to gain infor-
mation about the inner structure of a planetary
body from seismological observations. Chapter 3
will then provide some technical details on the
Apollo missions and on how seismic data can be
acquired on the moon. Chapter 4 will present
two possible analysis methods using the exam-
ple of N. R. Goins’, A. M. Dainty’s and M. N.
Toksöz’s work “Lunar Seismology: The Internal
Structure of the Moon” [7]. Ultimately, Chapter
5 will give a short outlook to the future of lunar
seismology.

2 Theoretical Basics
The following chapter shall give a rough idea
– without providing mathematical and techni-
cal details – on how to gain information about
the internal structure of a planetary body. Since
its purpose is to illustrate the nature of seismo-
logy’s mathematical framework, it is restricted
to a one dimensional velocity gradient in a pla-
nar body which often models real world problems
satisfactorily well. A generalization to three di-
mensions and roundly shaped bodies is a purely
mathematical (and tedious) exercise and yields
no further perception of the physical nature. Al-
so, other perturbations like low velocity zones
(LVZ) and scattering effects are not covered in
this short outline which is mainly taken from
Peter M. Shearer’s “Introduction to Seismology”
[4].

2.1 Seismic Wave Types
Seismic waves are, generally speaking, a form
of energy that travels through an planetary bo-
dy. They are usually caused by earthquakes, im-
pacts, explosions or volcanic eruptions. There are
basically two seismic wave types, namely P wa-
ves and S waves.
P (or longitudinal) waves are compressional

pressure waves, whereas S (or transverse) waves
are pure shear waves. Their propagating natures
are depicted in figure 2.
The nomenclature P and S stands for “Pri-

mary” and “Secondary” and stems from the fact
that P waves travel faster through solids than S
waves and are therefor registered first after an
earthquake.
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FIG. 2: Harmonic P wave (top) and S wave (bot-
tom) propagating horizontally across the
page. Note that P (longitudinal) propa-
gation – unlike S (transverse) propagati-
on – causes a volume change in the mate-
rial. Compared to real planetary objects,
the deflections shown are highly exagge-
rated. Taken from [4].

2.2 Velocity
In order to do seismologic calculations, we must
develop a mathematical model of the propagati-
on velocity of plane waves in a solid. This ma-
thematical model is already given by the field
of linear elasticity which provides mathematical
descriptions on how a solid deforms and becomes
internally stressed.
In linear elasticity, homogeneous and isotro-

pic materials are characterized by their so-called
Lamé parameters λ and µ which denote, respec-
tively, the first Lamé parameter and the shear
modulus (or modulus of rigidity). These two pa-
rameters are related via the bulk modulus (or
modulus of incompressibility) κ:

κ = λ+ 2
3 µ. (2.1)

These parameters allow a mathematical descrip-
tion of the plane wave velocities vP and vS for
both, P and S waves respectively, which are given
by

vP =
√
λ+ 2µ
ρ

=

√
κ+ 3

4µ

ρ
and (2.2)

vS =
√
µ

ρ
, (2.3)

where ρ denotes the material’s mass density [4].

x

s

t

θ

wavefront at time t1

wavefront at time t1 + 

FIG. 3: A seismic plane wave traveling with con-
stant velocity v under an angle θ relati-
ve to the surface’s perpendicular. Taken
from [4].

A derivation of these formulas will not be shown
in this text, but can be found in [8].

2.3 Ray Theory and Travel Times
Seismic ray theory provides a relatively simple,
yet powerful, model we can use to calculate tra-
vel times of seismic waves using the velocity rela-
tions we obtained in the previous section. Addi-
tionally, it comes in handy that seismic ray theo-
ry is mostly analogous to its optical counterpart
which allows a more intuitive understanding.
A big advantage of ray theory (and in par-

ticular of the ray tracing routines described be-
low) is that it is easy to implement for computer-
assisted calculations. However, it is a very simple
model and naturally has its limitations when it
comes to describing so-called “non-geometrical”
effects such as head waves or refracted waves.

2.3.1 Snell’s Law

Assuming a seismic plane wave propagating with
constant velocity v under an angle θ relative to
the surface’s perpendicular, we have

∆s = ∆x · sin θ, (2.4)

where ∆s is the distance separating the same
wavefront at given times t1 and t1 + ∆t and ∆x
the corresponding distance on the surface (see
figure 3).
Using ∆s = v∆t and defining the so-called

slowness u = v−1, we get

∆t
∆x = sin θ

v
= u · sin θ ≡ p, (2.5)

where p denotes the ray parameter which is also
called horizontal slowness since it represents the
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projection of u on the surface plane. Note that p
can be measured directly by timing the arrivals
of the wavefront at two points separated by ∆x.
The next step is to consider a plane wave stri-

king a interface between two layers of homoge-
neous, but different plane wave velocities v1 and
v2. As figure 4a shows, the direction of propa-
gation must change at the interface in order to
conserve the continuity of the wavefronts at the
borderline between layers.
Since the ray parameter p with respect to the

interface is the same for both velocities v1 and
v2, we can use equation 2.5 to formulate

p = u1 · sin θ1 = u2 · sin θ2, (2.6)

where θ1 and θ2 denote the respective ray angles
from the vertical (see figure 4a). Notice that this
is in perfect analogy with Snell’s law of refracti-
on of geometrical optics.

2.3.2 Continuous Velocity Gradients

We can now generalize our findings about seismic
wave refraction by considering a series of layers
of increasing wave velocities as shown in figure
4b. Applying equation 2.6 yields

p = u1 · sin θ1 = u2 · sin θ2 = u3 · sin θ3 = · · · .
(2.7)

As the velocity increases with each layer, θ also
increases, forcing the ray into a bent trajectory
until it reaches its so-called turning point with
θ = 90°.
Now, it is easy to imagine a continuous velo-

city gradient instead of a layered material by as-
suming an infinitesimally small distance dz bet-
ween interfaces. Using that p is constant throug-
hout the whole ray path (see equation 2.7), we
know for any given u and θ that

p = u0 · sin θ0 = u · sin θ, (2.8)

where u0 is the initial slowness and θ0 the takeoff
angle of the ray. Note that p = utp, where utp is
the slowness at the turning point as sin(90°) = 1.
Most generally, plane wave velocity increases

with depth z in most solid planetary bodies. Fi-
gure 6 shows ray paths for different ray parame-
ters p and a linearly increasing plane wave velo-
city v(z). The velocity gradient causes the ray to

T

dT/dX= p = ray parameter

X

= horizontal slowness
= constant for given ray

FIG. 5: Travel time curve for a model in which
velocity increases with depth. One point
on the curve corresponds to one given
ray path whose ray parameter p equals
the slope in that point of the curve. Ta-
ken from [4].

turn back towards the surface while smaller ray
parameters result in deeper penetration depths
and therefor in longer travel distances X along
the surface.1
The travel time properties of a given materi-

al can be characterized by its travel time curve
which illustrates the dependence of the total tra-
vel time T on the total travel distance X along
the surface. If the velocity increases with depth,
the time travel curve will qualitatively look like
figure 5.

2.3.3 Travel Distance and Time

We can define the slowness vector s which has
the length u and is directed along the propagati-
on direction of a given ray. This slowness vector s
can be split up in its horizontal and vertical com-
ponents sx and sz. The length of sx is obviously
given by the horizontal slowness

p = |sx| = u · sin θ, (2.9)

whereas the vertical slowness |sz| can be analo-
gously defined as

η = |sz| = u · cos θ (2.10)

(see figure 7a). In the same manner, we can as-
1The described 1-dimensional model does not provide
any explanation on why the ray would bend back to-
wards the surface after the turning point, since it tra-
vels parallel to the velocity gradient. Still, this is an
experimentally observed effect caused by reflection ne-
ar the turning point.
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FIG. 4: (a) A seismic planewave must change its direction of propagation at a interface between
two layers of different velocities v1 < v2. The time difference ∆t between plotted wavefronts
is constant. (b) A series of layers of increasing velocities therefor causes stepwise diffraction
of the seismic plane wave. Taken from [4].

v

z
p
decreasing

X increasing

FIG. 6: Ray paths for different ray parameters p. A linearly increasing plane wave velocity v(z)
results in semicircular ray paths. Smaller ray parameters p yield longer distances X. Every
ray path corresponds to one point in a travel time curve. Taken from [4].
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FIG. 7: (a): Angle relations of the slowness vec-
tor s. (b): A length segment along the
ray path ds and their horizontal and ver-
tical components. Taken from [4].

sume an infinitesimally small length segment ds
and its horizontal and vertical components dx
and dz (see figure 7b).
With simple trigonometry we can now formu-

late the following relations:
dx
ds = sin θ (2.11)
dz
ds = cos θ =

√
(1− sin2 θ). (2.12)

Using p = u · sin θ, we get
dx
ds = p

u
(2.13)

dz
ds =

√
u2 − p2

u
. (2.14)

We can use these expressions to calculate dx/dz:
dx
dz = p√

u2 − p2 (2.15)

Integrating eventually gives us an expression for
the horizontal distance X

X(p) = 2p
∫ ztp

0

dz√
u2(z′)− p2 , (2.16)

where ztp is the depth of the turning point. We
therefor integrate halfway along the ray path and
use the symmetry around the turning point by
doubling the result in order to get the total ho-
rizontal distance X(p).
Similarly, using dt/ds = u we can derive the

expression

dt
dz = u2√

u2(z)− p2 . (2.17)

Integrating and using the symmetry of the ray
path once again finally yields

T (p) = 2
∫ ztp

0

u2(z)√
u2(z)− p2 dz. (2.18)

Equations 2.16 and 2.18 allow us to derive the
total distance and the travel time, respectively,
for a given ray with p in a slowness gradient u(z).

2.4 Inversion of Travel Time Data
In a real world problem, we are more likely to
know X and T from measurements and want
to compute the corresponding slowness gradient
u(z).
The solution to a similar problem was found

in 1826 by Niels Henrik Abel which is called Abel
integral [9].2 It states that the solution to an in-
tegral equation of the form

t(x) =
∫ a

x

f(ξ)√
ξ − x

dξ (2.19)

is given by

f(ξ) = − 1
π

d
dξ

∫ a

ξ

t(x)√
x− ξ

dx. (2.20)

If we use equation 2.16 and change the integra-
tion variable to u2, we get

X(p)
2p =

∫ p2

u2
0

dz/d(u2)√
u2 − p2 d(u2), (2.21)

where u0 = u(z = 0). We can solve this integral
equation by identifying t(x) = X(p)/2p, x = p2,
ξ = u2 and f(ξ) − dz/d(u2) which makes this
equation analogous to 2.19. Using Abel’s solution
yields

z(u) = − 1
π

∫ u

u0

X(p)√
p2 − u2 dp. (2.22)

Equation 2.22 can be rewritten using partial in-
tegration to give

z(u) = 1
π

∫ X(u)

0
cosh−1(p/u) dx. (2.23)

This approach was derived in the 1900s inde-
pendently by Gustav Herglotz, Emil Wiechert
and Harry Bateman and is often referred to as
the Herglotz-Wiechert method [10, 11, 12, 13].

2The original problem was to find the shape of a hill,
given the time it takes a ball to roll up and back down
the hill, as a function of the initial velocity of the ball.
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3 Data Acquisition

All seismic data from the moon originate from
the four stations set up during NASA’s Apol-
lo Missions 12, 14, 15 and 16 between 1969
and 1972 (see figure 8). Each Station consists
of four seismometers: three long-period instru-
ments (LP) with response peaks ranging from
periods from 1 s to 10 s and one short-period in-
strument (SP) with a response peak at 8Hz [14].
Some seismometers also include polarization fil-
ters which allow a better separation of the real
waves from randomly scattered energy [15]. The
positions of the stations are listed in table 1 and
plotted in figure 10.

TAB. 1: Locations and installation dates of the
Apollo seismometer stations. The ope-
ration of all stations was terminated in
1977. Taken from [7].

Station Location Installation Date
12 3.04°S, 23.42°W 11/19/69
14 3.65°S, 17.48°W 02/05/71
15 26.08°N, 3.66°E 07/31/71
16 8.97°S, 15.51°E 04/21/72

The recorded data sets consist of the primary
data which are in this case the arrival times of
seismic waves and secondary data like amplitu-
des and polarization of incoming waves.
There are three types of natural seismic

sources. Meteorite impacts which are easy to
locate because they only occur on the moon’s
surface and are marked by their impact craters;
near-surface moonquakes (or high-frequency te-
leseisms, HFT’s) which occur between 0 km and
200 km depth; and deep focus moonquakes with
depths of 800 km to 1100 km. The latter is the
most common lunar seismic event. Unlike earth-
quakes, moonquakes are not caused by tectonic
plate movement, but by tidal forces between the
earth and the moon and are therefor smaller in
magnitude (maximum Richter magnitudes of 5).
It is also possible to generate artificial seismic

events on the moon, e.g. by deliberately crashing
the S-IVB stages of several Apollo missions on
the moon’s surface [17] or by controlled detona-
tions [18].

FIG. 8: Astronaut Buzz Aldrin deploys a seis-
mometer at the Sea of Tranquility lan-
ding site during the Apollo 11 missi-
on. This seismometer was operational for
just three weeks. More advanced seismo-
meters were deployed during the Apollo
12, 14, 15 and 16 missions. Taken from
[16].

To gain information on the internal lunar
structure which is basically the goal of lunar seis-
mology, it is necessary to locate the source of a
given seismic event in space and time which cor-
responds in the case of a deep focus moonquake
to four degrees of freedom. That is why five or
more arrival times of the same event must be
observed in order to study the lunar structure.
On the other hand, surface events like meteo-
rite impacts or HFT’s only require four obser-
ved arrival times since their altitude is naturally
well-constrained to the surface (z ≈ 0). For data
analysis, events must be selected accordingly.

4 Data Analysis by Goins et al.

The following section will present the findings of
N. R. Goins, A. M. Dainty and M. N. Toksöz in
their publication “Lunar Seismology: The Inter-
nal Structure of the Moon” (1981) [7]. Although
there are more recent articles that provide better
and more sophisticated analysis methods, cur-
rent results do not differ substantially from the

7



FIG. 9: Velocity model for the lunar crust used
by Goins et al. in order to analyze the
mantle structure. Data from [19], taken
from [7].

ones shown by Goins et al. Above all, the me-
thods presented here can be understood more
intuitively and give a good idea of the problem
seismologists face when analyzing seismic data.
The crustal structure of the moon has alrea-

dy been proposed in earlier works like the one by
Cooper et al. in 1974 [19]. The results of this stu-
dy are shown in figure 9 and were used by Goins
et al. to account for the effect of the very low
compressional wave velocities in the uppermost
crust.3

4.1 Event Selection

As mentioned previously, seismic events must
meet the requirement to allow both, localization
and gain of structural information at the same

3Actually, the velocity model by Cooper et al. applies
just to the lunar crust in the Oceanus Procellarum re-
gion beneath The Apollo 12 and 14 station. However,
further studies have shown that the crustal structure
beneath other seismometer stations can be assumed
to be similar [20].

time. The data set Goins et al. consequently cho-
se, contains 8 meteoroid impacts, 8 HFT events
and 24 deep moonquakes, for a total of 40 seismic
events. The determined locations of these events
are plotted in figure 10 together with the loca-
tions of the Apollo seismometer stations 12, 14,
15 and 16.

4.2 Analysis Methods

In principle, Goins at al. used two basic approa-
ches to extract structural information about the
moon from seismic arrival times. Both methods
require that the arrival times (which are the mea-
sured quantity) are expressed as functions of the
unknown parameters like event locations, origin
times and, for example, vertical velocity gradi-
ents. Given that there were only four seismome-
ter stations operational at the time of the data
acquisition, there is a maximum of eight data va-
lues (known variables) for each event (for P and
S arrival times).

4.2.1 Parameter Search Method

The first method used by Goins et al. was to
solve the the forward problem many times, i.e.
choosing tentative values for the unknown para-
meters and calculating the resulting discrepancy
from the measured arrival times. This gives as
many estimates for the origin time as there were
data values at hand. Now, the so-called Geiger’s
method is applied, i.e. the variance e2 of these
estimated origin times (up to eight) is calcula-
ted and serves as the fit parameter to be mini-
mized since for one event there should be only
one origin time for all seismometer stations.
Afterwards, a systematical variation of the in-

itial values (e.g. using an evolutionary algorithm)
allows to scan the whole parameter space for the
optimal solution in terms of the smallest value
for e2.

4.2.2 Linearized Matrix Inversion

The second method used, utilizes inverse pro-
blem theory to solve for the unknown parame-
ters. A more detailed discussion of this method
is, for instance, given by Ralph A. Wiggins [21].

8



(a)

(b)

FIG. 10: The determined event locations used by
Goins et al. of surface events (a) and
deep moonquakes (b). Symbol size cor-
responds to one standard deviation in
location estimate. Taken from [7].

First, a vector d is defined

d = (d1, d2, d3, . . . , dn), (4.1)

where each component of d represents one mea-
sured data point (P or S arrival time). For N
observed events, we get n ≤ 8N . In the same
manner, b represents the unknown parameters
to be determined.

b = (b1, b2, b3, . . . , bm), (4.2)

where m denotes the total number of unknown
parameters. For I surface events, J deep moon-
quakes and K velocity model values, we have
m = 3I + 4J + K since for every surface event
latitude, longitude and origin time must be de-
termined and for interior events also depth.
For the whole data set used by Goins et al., we

have I = 16, J = 24, K = 4, N = 40, n = 228,
m = 148.
The initial parameter values are taken from

the first parameter search approach (section
4.2.1) and denoted as b′, whereas the resultant
predicted data values are referred to as d′ so that

d′ = F (b′), (4.3)

where F is the functional relationship between
the knowns (arrival times) and the unknowns
that arises from theoretical treatments like the
one described in section 2. An exact description
of the used ray-tracing theory can be found in
[22].
Now, the misfits between the predicted and

the measured arrival times are expressed as

∆d = d− d′ (4.4)

and the corrections to the initial model values as

∆b = b− b′. (4.5)

Then we can describe the relation between ∆d
and ∆b as

∆d = A∆b, (4.6)

where A is the Jacobian matrix

A =


∂d1
∂b1

· · · ∂d1
∂bm...
...

∂dn
∂b1

· · · ∂dn
∂bm

 , (4.7)
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that can be solved for using analytical methods
of linear inversion described in “Quantitative
Seismology” by Keiiti Aki and Paul G. Richards
[23].
The resulting corrections can be used to repe-

at the same calculation with the refined initial
values iteratively. This approach is more effecti-
ve than the parameter search method which has
only been used to get reasonable initial values
for the first iteration.

4.3 Results

The following section will summarize the results
Goins et al. came to and conclude this work. In
addition to the pure velocity model that has be-
en obtained using the methods describes above,
Goins et al. were also able to figure out an at-
tenuation model that quantifies the anelastic at-
tenuation of a seismic wave due to friction and
other energy losses depending on the depth. The
quantity used in seismology to express the atte-
nuation is the quality factor Q which is inversely
proportional to the attenuation factor δ and de-
fined as

Q = 2π E

∆E , (4.8)

where E/∆E denotes the energy loss per wave
cycle [24]. This Q value also yields information
about the lithology and other parameters such
as porosity.
Experimentally, Q values can be accessed by

examining the amplitudes of the measured seis-
mic signals. Although the corresponding theore-
tical basics have not been discussed in this work,
the results will be shown for the sake of comple-
teness.

4.3.1 Velocity and Attenuation Model

The velocity model Goins et al. obtained in this
work is tabulated in table 2 and illustrated in
figure 11.
According to these data the upper mantle regi-

on ranges from 60 km to 400 km depth with ave-
rage wave velocities of vP = (7.7 ± 0.2)km s−1

and vS = (4.45± 0.05)km s−1.
Between the upper and lower mantle regions,

there is a transition zone ranging from 400 km

TAB. 2: Velocity model for P and S waves obtai-
ned by Goins et al. Taken from [7].

Depth [km] vP [km s−1] vS [km s−1]
60 7.75 4.57
400 7.65 4.37
480 7.6 4.20
1100 7.6 4.20

FIG. 11: Plot of the moon’s velocity model (P
and S waves), wave velocity in depen-
dence of depth. Taken from [7].

to 480 km depth. The region below this tran-
sition zone extends to a depth of 1100 km and
marks the lower mantle with average wave ve-
locities of vP = (7.6 ± 0.6)km s−1 and vS =
(4.2± 0.1)km s−1.
Goins et al. were not able to extract any relia-

ble information about the lunar structure below
1100 km depth (the depth of the deepest moon-
quakes registered) including evidence concerning
the existence of a core.4
The attenuation model obtained from ampli-

tude measurements is given in table 3.
Summarizing all the information stated abo-

ve, we arrive at a lunar interior structure that is
illustrated in figure 12.

4More recent works provide evidence of a lunar core,
albeit of small radius (350 km or less) [25].
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TAB. 3: Attenuation model obtained by Goins
et al. Taken from [7].

Region Depth [km] Q

Crust 0–60 5000
Upper mantle 60–400 4000
Lower mantle 400–1100 1500

Attenuating zone >1100 <500

FIG. 12: Lunar interior structure after Goins et
al. No reliable information about the
attenuating zone and a possible core
could be acquired. Taken from [7].

5 Outlook

Since the data sets provided by the Apollo Passi-
ve Seismic Experiment are limited, it will be ne-
cessary to deploy new instruments on the moon
in order to gain new insights about the internal
structure (all discoveries of the last years were
due to more elaborate analysis methods applied
to the old data sets).
One particular experiment that has often be-

en proposed, is the installation of seismological
arrays on the lunar surface [26]. A seismologi-
cal array is basically a spacial sequence of seis-
mometers of well-defined configuration and rela-
tive distance [27]. This array configuration has
numerous advantages over single seismometers,
whereat the most important one is probably the
possibility to sum over all individual recordings
of the array stations and therefor to obtain a si-
gnificantly better signal-to-noise ratio. Further-
more, seismological arrays can gain directional
information about seismic signals allowing to di-
rectly locate a seismic source with a single array

FIG. 13: Schematic of the Small Aperture Lu-
nar Seismic Array (SALSA) proposed
by Fouch et al. Taken from [26].

measurement [27]. A schematic of the seismologi-
cal array proposed by M. J. Fouch et al. is shown
in figure 13.
Thanks to the improved signal-to-noise ratio

seismological arrays provide, it would be possi-
ble to lower the detection threshold and there-
for record moonquakes below the current thres-
hold of about 1100 km depth and to increase the
measurement precision overall allowing to resol-
ve the fine-structure of the moon’s interior [27].
The main goal of such an experiment would pro-
bably be to determine the location and state of
the moon’s core which is, until now, unclear [26].
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